Menkes disease | |
---|---|
ATP7A | |
Classification and external resources | |
Specialty | endocrinology |
ICD-10 | E83.0 |
ICD-9-CM | 759.89 |
ICD-O | ? |
OMIM | 309400 |
DiseasesDB | 8029 |
MedlinePlus | 001160 |
eMedicine | neuro/569 ped/1417 derm/715 |
MeSH | D007706 |
Menkes disease (MNK), also known as Menkes syndrome, is an X-linked recessive disorder that affects copper levels in the body, leading to copper deficiency. The onset of Menkes disease typically begins during infancy, affecting about 1 in 100,000 to 250,000 newborns. Infants with MNK syndrome often do not live past the age of 3. It is more common in males than females, because it only takes one copy of the X-linked recessive gene to be expressed for a male to develop the disease. In order for females to develop the disorder they would need to express two copies of the gene, one on each X chromosome to develop the disorder. MNK is characterized by kinky hair, growth failure, and deterioration of the nervous system. It is caused by mutations in the copper transport gene, ATP7A, which is responsible for making a protein that is important for regulating the copper levels in the body.
The disorder was originally described by John Hans Menkes (1928–2008) et al. in 1962.
Alternative names:
Signs and symptoms of this disorder include weak muscle tone (hypotonia), sagging facial features, seizures, intellectual disability, and developmental delay. The patients have brittle hair and metaphyseal widening. In rare cases, symptoms begin later in childhood and are less severe. Affected infants may be born prematurely. Symptoms appear during infancy and are largely a result of abnormal intestinal copper absorption with a secondary deficiency in copper-dependent enzymes. Normal or slightly slowed development may proceed for 2 to 3 months, and then there will be severe developmental delay and a loss of early developmental skills. Menkes Disease is also characterized by seizures, failure to thrive, subnormal body temperature, and strikingly peculiar hair, which is kinky, colorless or steel-colored, and easily broken. There can be extensive neurodegeneration in the gray matter of the brain. Arteries in the brain can also be twisted with frayed and split inner walls. This can lead to rupture or blockage of the arteries. Weakened bones (osteoporosis) may result in fractures.