*** Welcome to piglix ***

Mathematics of paper folding


The art of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it) and the use of paper folds to solve mathematical equations.

In 1893, Indian mathematician T. Sundara Rao published "Geometric Exercises in Paper Folding" which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the kindergarten system. This book had an approximate trisection of angles and implied construction of a cube root was impossible. In 1936 Margharita P. Beloch showed that use of the 'Beloch fold', later used in the sixth of the Huzita–Hatori axioms, allowed the general cubic equation to be solved using origami. In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms. The axioms were discovered by Jacques Justin in 1989. but were overlooked until the first six were rediscovered by Humiaki Huzita in 1991. The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy.

The construction of origami models is sometimes shown as crease patterns. The major question about such crease patterns is whether a given crease pattern can be folded to a flat model, and if so, how to fold them; this is an NP-complete problem. Related problems when the creases are orthogonal are called map folding problems. There are three mathematical rules for producing flat-foldable origami crease patterns:

Paper exhibits zero Gaussian curvature at all points on its surface, and only folds naturally along lines of zero curvature. Curved surfaces that can't be flattened can be produced using a non-folded crease in the paper, as is easily done with wet paper or a fingernail.

Assigning a crease pattern mountain and valley folds in order to produce a flat model has been proven by Marshall Bern and Barry Hayes to be NP-complete. Further references and technical results are discussed in Part II of Geometric Folding Algorithms.


...
Wikipedia

...