The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics, and to provide a viewpoint of the nature and methodology of mathematics and to understand the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts.
The terms philosophy of mathematics and mathematical philosophy are frequently used interchangeably. The latter, however, may be used to refer to several other areas of study. One refers to a project of formalizing a philosophical subject matter, say, aesthetics, ethics, logic, metaphysics, or theology, in a purportedly more exact and rigorous form, as for example the labors of scholastic theologians, or the systematic aims of Leibniz and Spinoza. Another refers to the working philosophy of an individual practitioner or a like-minded community of practicing mathematicians. Additionally, some understand the term "mathematical philosophy" to be an allusion to the approach to the foundations of mathematics taken by Bertrand Russell in his books The Principles of Mathematics and Introduction to Mathematical Philosophy.
Recurrent themes include:
The origin of mathematics is subject to argument. Whether the birth of mathematics was a random happening or induced by necessity duly contingent upon other subjects, say for example physics, is still a matter of prolific debates.
Many thinkers have contributed their ideas concerning the nature of mathematics. Today, some philosophers of mathematics aim to give accounts of this form of inquiry and its products as they stand, while others emphasize a role for themselves that goes beyond simple interpretation to critical analysis. There are traditions of mathematical philosophy in both Western philosophy and Eastern philosophy. Western philosophies of mathematics go as far back as Pythagoras, who described the theory everything is mathematics (mathematicism), Plato, who paraphrased Pythagoras, and studied the ontological status of mathematical objects, and Aristotle, who studied logic and issues related to infinity (actual versus potential).