Martian regolith simulant (or Martian soil simulant) is a terrestrial material that is used to simulate the chemical and mechanical properties of Martian regolith for research, experiments and prototype testing of activities related to Martian regolith such as dust mitigation of transportation equipment, advanced life support systems and in-situ resource utilization.
After the Viking landers and the Mars Pathfinder's rover landed on Mars, the onboard instruments were used to determine the properties of the Martian soil at the landing sites. The studies of the Martian soil properties led to the development of JSC MARS-1 Martian regolith simulant at NASA's Johnson Space Center in 1998. It contains palagonitic tephra with particle size fraction of less than 1 millimeter. The palagonitic tephra, which is glassy volcanic ash altered at low temperature, was mined from a quarry at the Pu'u Nene cinder cone. The studies of the cone, which is located between Mauna Loa and Mauna Kea in Hawaii, indicate that the tephra is a close analog to the bright regions of Mars.
As NASA returned to the Moon and Mars missions, there were needs for Lunar and Martian regolith simulants. NASA's Marshall Space Flight Center has contracted Orbital Technologies Corporation to supply 16 metric tons of improved lunar and Martian simulants since 2005. The company has also made an additional eight tons of Martian simulant available for other interested parties to purchase.