*** Welcome to piglix ***

Manifold theory


In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. In this more precise terminology, a manifold is referred to as an n-manifold.

One-dimensional manifolds include lines and circles, but not figure eights (because they have crossing points that are not locally homeomorphic to Euclidean 1-space). Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, which can all be embedded (formed without self-intersections) in three dimensional real space, but also the Klein bottle and real projective plane, which will always self-intersect when immersed in three-dimensional real space.

Although a manifold locally resembles Euclidean space, meaning that every point has a neighborhood homeomorphic to an open subset of Euclidean space, globally it may not: manifolds in general are not homeomorphic to Euclidean space. For example, the surface of the sphere is not homeomorphic to a Euclidean space, because (among other properties) it has the global topological property of compactness that Euclidean space lacks, but in a region it can be charted by means of map projections of the region into the Euclidean plane (in the context of manifolds they are called charts). When a region appears in two neighbouring charts, the two representations do not coincide exactly and a transformation is needed to pass from one to the other, called a transition map.


...
Wikipedia

...