In the mathematical field of topology, a homeomorphism or topological isomorphism or bi continuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words (homoios) = similar and (morphē) = shape, form.
Roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. An often-repeated mathematical joke is that topologists can't tell the difference between a coffee cup and a donut, since a sufficiently pliable donut could be reshaped to the form of a coffee cup by creating a dimple and progressively enlarging it, while preserving the donut hole in a cup's handle.
A function f: X → Y between two topological spaces (X, TX) and (Y, TY) is called a homeomorphism if it has the following properties:
A function with these three properties is sometimes called bicontinuous. If such a function exists, we say X and Y are homeomorphic. A self-homeomorphism is a homeomorphism of a topological space and itself. The homeomorphisms form an equivalence relation on the class of all topological spaces. The resulting equivalence classes are called homeomorphism classes.