The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the nominal frequency of the oscillations of alternating current (AC) in an electric power grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains power around the world.
During the development of commercial electric power systems in the late 19th and early 20th centuries, many different frequencies (and voltages) had been used. Large investment in equipment at one frequency made standardization a slow process. However, as of the turn of the 21st century, places that now use the 50 Hz frequency tend to use 220–240 V, and those that now use 60 Hz tend to use 100–127 V. Both frequencies coexist today (Japan uses both) with no great technical reason to prefer one over the other and no apparent desire for complete worldwide standardization.
Unless specified by the manufacturer to operate on both 50 and 60 Hz, appliances may not operate efficiently or even safely if used on anything other than the intended frequency.
In practice, the exact frequency of the grid varies around the nominal frequency, reducing when the grid is heavily loaded, and speeding up when lightly loaded. However, most utilities will adjust the frequency of the grid over the course of the day to ensure a constant number of cycles occur. This is used by some clocks to accurately maintain their time.
Several factors influence the choice of frequency in an AC system. Lighting, motors, transformers, generators and transmission lines all have characteristics which depend on the power frequency. All of these factors interact and make selection of a power frequency a matter of considerable importance. The best frequency is a compromise between contradictory requirements.
In the late 19th century, designers would pick a relatively high frequency for systems featuring transformers and arc lights, so as to economize on transformer materials, but would pick a lower frequency for systems with long transmission lines or feeding primarily motor loads or rotary converters for producing direct current. When large central generating stations became practical, the choice of frequency was made based on the nature of the intended load. Eventually improvements in machine design allowed a single frequency to be used both for lighting and motor loads. A unified system improved the economics of electricity production, since system load was more uniform during the course of a day.