*** Welcome to piglix ***

Magnetotellurics


Magnetotellurics (MT) is an electromagnetic geophysical method for inferring the earth's subsurface electrical conductivity from measurements of natural geomagnetic and geoelectric field variation at the Earth's surface. Investigation depth ranges from 300 m below ground by recording higher frequencies down to 10,000 m or deeper with long-period soundings. Proposed in Japan in the 1940s, and France and the USSR during the early 1950s, MT is now an international academic discipline and is used in exploration surveys around the world. Commercial uses include hydrocarbon (oil and gas) exploration, geothermal exploration, carbon sequestration, mining exploration, as well as hydrocarbon and groundwater monitoring. Research applications include experimentation to further develop the MT technique, long-period deep crustal exploration, deep mantle probing, and earthquake precursor prediction research.

The magnetotelluric technique was introduced independently by Japanese scientists in the 1940s (Hirayama, Rikitake), the French geophysicist Louis Cagniard in 1953 and Russian geophysicist Andrey Nikolayevich Tikhonov in 1950. With advances in instrumentation, processing and modelling, MT has become one of the most important tools in deep Earth research.

Since first being created in the 1950s, magnetotelluric sensors, receivers and data processing techniques have followed the general trends in electronics, becoming less expensive and more capable with each generation. Major advances in MT instrumentation and technique include the shift from analog to digital hardware, the advent of remote referencing, GPS time-based synchronization, and 3D data acquisition and processing.

For hydrocarbon exploration, MT is mainly used as a complement to the primary technique of reflection seismology exploration. While seismic imaging is able to image subsurface structure, it cannot detect the changes in resistivity associated with hydrocarbons and hydrocarbon-bearing formations. MT does detect resistivity variations in subsurface structures, which can differentiate between structures bearing hydrocarbons and those that do not.


...
Wikipedia

...