Lognormal
Log-normal
Probability density function
![Plot of the Lognormal PDF](//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/300px-PDF-log_normal_distributions.svg.png) Some log-normal density functions with identical location parameter but differing scale parameters
|
Cumulative distribution function
![Plot of the Lognormal CDF](//upload.wikimedia.org/wikipedia/commons/thumb/4/42/CDF-log_normal_distributions.svg/300px-CDF-log_normal_distributions.svg.png) Cumulative distribution function of the log-normal distribution (with )
|
Notation |
![\ln {\mathcal {N}}(\mu ,\,\sigma ^{2})](https://wikimedia.org/api/rest_v1/media/math/render/svg/386da0fe15c4c821d647ee40095573ba32a6119c) |
Parameters |
— location,
— scale
|
Support |
![x\in (0,+\infty )](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a84264a320783309b0360b749207851a58f148a) |
PDF |
![{\frac {1}{x\sigma {\sqrt {2\pi }}}}\ e^{-{\frac {\left(\ln x-\mu \right)^{2}}{2\sigma ^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c02672f3d3d174f3025fe93379bd92c6d6d5406f) |
CDF |
![{\frac {1}{2}}+{\frac {1}{2}}\,\mathrm {erf} {\Big [}{\frac {\ln x-\mu }{{\sqrt {2}}\sigma }}{\Big ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3cde9b1ecbbb13897c36b45898ebbd7cd2366ecc) |
Mean |
![{\displaystyle \exp({\mu +\sigma ^{2}/2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e6f92329d8aa30e74775d0f08fbb9aa11e3b120d) |
Median |
![{\displaystyle \exp({\mu }\,)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83e46b084a71dd285397c5f9b4b6ae05b718b256) |
Mode |
![{\displaystyle \exp({\mu -\sigma ^{2}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c8bfe1813bc703ec90b7b8e7cef50c70866687) |
Variance |
![{\displaystyle [\exp({\sigma ^{2}}\!\!)-1]*\exp({2\mu +\sigma ^{2}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e283edefb1b3afc7e344a84d6a4d4edd51c20cd9) |
Skewness |
![(e^{\sigma ^{2}}\!\!+2){\sqrt {e^{\sigma ^{2}}\!\!-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68a58ace97758726d2b43d70445f0d4e313de45d) |
Ex. kurtosis |
![{\displaystyle \exp({4\sigma ^{2}}\!\!)+2\exp({3\sigma ^{2}}\!\!)+3\exp({2\sigma ^{2}}\!\!)-6}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a4e56d7023a103aed6a4e163f7ae1a7d7112220) |
Entropy |
![{\displaystyle \log(\sigma e^{\mu +{\tfrac {1}{2}}}{\sqrt {2\pi }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9efcc1a765cdbd6b9f89f19a5d5713c37dfb7cad) |
MGF |
defined only for numbers with a non-positive real part, see text |
CF |
representation is asymptotically divergent but sufficient for numerical purposes |
Fisher information |
![{\displaystyle {\begin{pmatrix}1/\sigma ^{2}&0\\0&1/2\sigma ^{4}\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19370efeb96fb6b4d87032eb2b7e17353e0f8094) |
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable
is log-normally distributed, then
has a normal distribution. Likewise, if
has a normal distribution, then the exponential function of
is
has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. The distribution is occasionally referred to as the Galton distribution or Galton's distribution, after Francis Galton. The log-normal distribution also has been associated with other names, such as McAlister, Gibrat and Cobb–Douglas.
...
Wikipedia