Monomer (does not exist)
|
|
Cyclic trimer
|
|
Names | |
---|---|
Other names
lithium hexamethyldisilazide
Hexamethyldisilazane lithium salt |
|
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.021.569 |
PubChem CID
|
|
|
|
|
|
Properties | |
C6H18LiNSi2 | |
Molar mass | 167.326 g/mol |
Appearance | White solid |
Density | 0.86 g/cm3 at 25 °C |
Melting point | 71 to 72 °C (160 to 162 °F; 344 to 345 K) |
Boiling point | 80 to 84 °C (176 to 183 °F; 353 to 357 K) (0.001 mm Hg) |
decomposes | |
Solubility | Most aprotic solvents THF, hexane, toluene |
Acidity (pKa) | 26 |
Hazards | |
Main hazards | flammable, corrosive |
Related compounds | |
Related compounds
|
Sodium bis(trimethylsilyl)amide Potassium bis(trimethylsilyl)amide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(SiMe3)2. It is commonly abbreviated as LiHMDS (lithium hexamethyldisilazide - a reference to its conjugate acid HMDS) and is primarily used as a strong non-nucleophilic base and as a ligand. Like many lithium reagents it has a tendency to aggregate and will form a cyclic trimer in the absence of coordinating species.
LiHMDS is commercially available, but it can also be prepared by the deprotonation of bis(trimethylsilyl)amine with n-butyllithium. This reaction can be performed in situ.
Once formed, the compound can be purified by sublimation or distillation.
LiHMDS is often used in organic chemistry as a strong non-nucleophilic base. Its conjugate acid has a pKa of ~26 making it is less basic that other lithium bases, such as LDA (pKa of conjugate acid ~36), but it is more sterically hindered and hence less nucleophilic. It can be used to form various organolithium compounds including acetylides, or lithium enolates.
As such it finds use in a range of coupling reactions; particularly carbon-carbon bond forming reactions such as the Fráter–Seebach alkylation and mixed Claisen condensations.