The highest specific impulse chemical rockets (liquid-propellant rockets) use liquid fuel propellants. Approximately 170 different liquid propellants have undergone lab testing. This estimate excludes minor changes to a specific propellant such as propellant additives, corrosion inhibitors, or stabilizers. In the U.S. alone at least 25 different propellant combinations have been flown. However, there has not been a completely new propellant used in flight for nearly 30 years. Many factors go into choosing a propellant for a liquid propellant rocket engine. The primary factors include ease of operation, cost, hazards/environment and performance. Bipropellants can be either hypergolic propellant or nonhypergolic. A hypergolic combination of oxidizer and fuel will start to burn upon contact. A nonhypergolic needs an ignition source.
On March 16, 1926, Robert H. Goddard used liquid oxygen (LOX) and gasoline as propellants for his first partially successful liquid rocket launch. Both are readily available, cheap and highly energetic. Oxygen is a moderate cryogen — air will not liquefy against a liquid oxygen tank, so it is possible to store LOX briefly in a rocket without excessive insulation. Gasoline has since been replaced by different hydrocarbon fuels, for example RP-1 - a highly refined grade of kerosene. This combination is quite practical for rockets that need not be stored, and to this day, it is used in the first stages of many orbital launchers.
Germany had very active rocket development before and during World War II, both for the strategic V-2 rocket and other missiles. The V-2 used an alcohol/LOX liquid propellant engine, with hydrogen peroxide to drive the fuel pumps. The alcohol was mixed with water for engine cooling. Both Germany and the United States developed reusable liquid propellant rocket engines that used a storeable liquid oxidizer with much greater density than LOX and a liquid fuel that would ignite spontaneously on contact with the high density oxidizer. The German engine was powered by hydrogen peroxide and a fuel mixture of hydrazine hydrate and methyl alcohol. The U.S. engine was powered by nitric acid oxidizer and aniline. Both engines were used to power aircraft, the Me-163B Komet interceptor in the case of the German engine and RATO units to assist take-off of aircraft in the case of the U.S. engine.