In mathematics, a Lipschitz domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function. The term is named after the German mathematician Rudolf Lipschitz.
Such domains are also called strongly Lipschitz domains to contrast them with weakly Lipschitz domains, which are a more general class of domains. A weakly Lipschitz domain is a domain whose boundary is locally flattable by a Lipschitzeomorphism.
Let . Let be an open subset of and let denote the boundary of . Then is called a Lipschitz domain if for every point there exists a hyperplane of dimension through , a Lipschitz-continuous function over that hyperplane, and the values and such that