*** Welcome to piglix ***

Linear fractional transformation


In mathematics, the phrase linear fractional transformation usually refers to a Möbius transformation, which is a homography on the complex projective line P(C) where C is the field of complex numbers.

More generally in mathematics, C may be replaced by another ring (A, +, ×). For example, the Cayley transform is a linear fractional transformation originally defined on the 3 x 3 real matrix ring.

In general, a linear fractional transformation refers to a homography over P(A), the projective line over a ring. When A is a commutative ring, then the linear fractional transformation has the familiar form

Otherwise homographies are expressed (az + b, cz + d) with homogeneous coordinates. The equivalence of such coordinates is expressed

The commutative rings of split-complex numbers and dual numbers join the ordinary complex numbers as rings that express angle. In each case the exponential map applied to the imaginary axis produces an isomorphism between one-parameter groups in (A, + ) and in the group of units (U, × ):

The "angle" y is hyperbolic angle, slope, or circular angle according to the host ring.


...
Wikipedia

...