In mathematics, the Cayley transform, named after Arthur Cayley, is any of a cluster of related things. As originally described by Cayley (1846), the Cayley transform is a mapping between skew-symmetric matrices and special orthogonal matrices. The transform is a homography used in real analysis, complex analysis, and quaternionic analysis. In the theory of Hilbert spaces, the Cayley transform is a mapping between linear operators (Nikol’skii 2001).
The Cayley transform is an automorphism of the real projective line that permutes the elements of {1, 0, −1, ∞} in sequence. For example, it maps the positive real numbers to the interval [−1, 1]. Thus the Cayley transform is used to adapt Legendre polynomials for use with functions on the positive real numbers with Legendre rational functions.
As a real homography, points are described with homogeneous coordinates, and the mapping is
In the complex projective plane the Cayley transform is:
Since {∞, 1, –1 } is mapped to {1, –i, i }, and Möbius transformations permute the generalised circles in the complex plane, f maps the real line to the unit circle. Furthermore, since f is continuous and i is taken to 0 by f, the upper half-plane is mapped to the unit disk.