Composition | Elementary particle |
---|---|
Statistics | Bosonic |
Interactions | Electromagnetic |
Symbol | γ |
Theorized | Albert Einstein |
Mass | 0 < ×10−18 eV/c2 1 |
Mean lifetime | Stable |
Electric charge | 0 < ×10−35 e 1 |
Spin | 1 |
Parity | −1 |
C parity | −1 |
Condensed | I(JPC)=0,1(1−−) |
A photon is an elementary particle, the quantum of the electromagnetic field including electromagnetic radiation such as light, and the force carrier for the electromagnetic force (even when static via virtual photons). The photon has zero rest mass and always moves at the speed of light within a vacuum. Like all elementary particles, photons are currently best explained by quantum mechanics and exhibit wave–particle duality, exhibiting properties of both waves and . For example, a single photon may be refracted by a lens and exhibit wave interference with itself, and it can behave as a particle with definite and finite measurable position and momentum. The photon's wave and quanta qualities are two observable aspects of a single phenomenon, and cannot be described by any mechanical model; a representation of this dual property of light, which assumes certain points on the wavefront to be the seat of the energy, is not possible. The quanta in a light wave cannot be spatially localized. Some defined physical parameters of a photon are listed.
The modern concept of the photon was developed gradually by Albert Einstein in the early 20th century to explain experimental observations that did not fit the classical wave model of light. The benefit of the photon model was that it accounted for the frequency dependence of light's energy, and explained the ability of matter and electromagnetic radiation to be in thermal equilibrium. The photon model accounted for anomalous observations, including the properties of black-body radiation, that others (notably Max Planck) had tried to explain using semiclassical models. In that model, light was described by Maxwell's equations, but material objects emitted and absorbed light in quantized amounts (i.e., they change energy only by certain particular discrete amounts). Although these semiclassical models contributed to the development of quantum mechanics, many further experiments beginning with the phenomenon of Compton scattering of single photons by electrons, validated Einstein's hypothesis that light itself is quantized. In 1926 the optical physicist Frithiof Wolfers and the chemist Gilbert N. Lewis coined the name photon for these particles. After Arthur H. Compton won the Nobel Prize in 1927 for his scattering studies, most scientists accepted that light quanta have an independent existence, and the term photon was accepted.