*** Welcome to piglix ***

Isospin


In nuclear physics and particle physics, isospin (isotopic spin, isobaric spin) is a quantum number related to the strong interaction. Particles that are affected equally by the strong force but have different charges (e.g. protons and neutrons) can be treated as being different states of the same particle with isospin values related to the number of charge states.

Although it does not have the units of angular momentum and is not a type of spin, the formalism that describes it is mathematically similar to that of angular momentum in quantum mechanics, which means it can be coupled in the same manner. For example, a proton-neutron pair can be coupled in a state of total isospin 1 or 0. It is a dimensionless quantity and the name derives from the fact that the mathematical structures used to describe it are very similar to those used to describe the intrinsic angular momentum (spin).

This term was derived from isotopic spin, a confusing term to which nuclear physicists prefer isobaric spin, which is more precise in meaning. Isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons. Isospin symmetry remains an important concept in particle physics. A close examination of this symmetry, historically, led directly to the discovery and understanding of quarks and of the development of Yang–Mills theory.

Isospin was introduced by Werner Heisenberg in 1932 to explain symmetries of the then newly discovered neutron:

Thus, isospin was introduced as a concept well before the development of the quark model, in the 1960s, which provides our modern understanding. The specific designation isospin however, was introduced by Eugene Wigner in 1937.


...
Wikipedia

...