Because of Archimedes' principle, a lifting gas is required for aerostats to create buoyancy. Its density is lower than that of air (about 1.29 kg/m3, 1.29 g/L). Only certain lighter than air gases are suitable as lifting gases.
Heated air is frequently used in recreational ballooning. According to the Ideal gas law, an amount of gas (and also a mixture of gases such as air) expands as it is heated. As a result, a certain volume of gas has a lower weight as the temperature is higher. The average temperature of air in a hot air balloon is about 212 °F (100 °C).
Hydrogen, being the lightest existing gas (14 times less dense than air), seems to be the most appropriate gas for lifting. But hydrogen has several disadvantages:
Helium is the second lightest gas. For that reason, it is an attractive gas for lifting as well. A major advantage is that this gas is noncombustible. But the use of helium has some disadvantages, too:
The gaseous state of water is lighter than air, incombustible and much cheaper than helium. The concept of using steam for lifting is therefore already 200 years old. The biggest challenge has always been to make a material that can resist it. In 2003, a university team in Berlin, Germany, has successfully made a 150 °C steam lifted balloon. However, such a design is generally impractical due to high boiling point and condensation.
Ammonia is sometimes used to fill weather balloons. Due to its high boiling point (compared to helium and hydrogen), ammonia could potentially be refrigerated and liquefied aboard an airship to reduce lift and add ballast (and returned to a gas to add lift and reduce ballast). Ammonia gas is relatively heavy, poisonous, and an irritant.
Methane, the main component of natural gas, is sometimes used as a lift gas when hydrogen and helium are not available. It has the advantage of not leaking through balloon walls as rapidly as the smaller molecules of hydrogen and helium. However, methane is highly flammable and like hydrogen is not appropriate for use in passenger-carrying airships. It is also relatively dense and a potent greenhouse gas.