In archaeology, palaeontology, and geomorphology, lichenometry is a geomorphic method of geochronologic dating that uses lichen growth to determine the age of exposed rock, based on a presumed specific rate of increase in radial size over time. Measuring the diameter of the largest lichen of a species on a rock surface can therefore be used to determine the length of time the rock has been exposed. Lichen can be preserved on old rock faces for up to 10,000 years, providing the maximum age limit of the technique, though it is most accurate (within 10% error) when applied to surfaces that have been exposed for less than 1,000 years. Lichenometry is especially useful for dating surfaces less than 500 years old, as radiocarbon dating techniques are less accurate over this period. The lichens most commonly used for lichenometry are those of the genera Rhizocarpon (e.g. the species Rhizocarpon geographicum) and Xanthoria.
It was first employed by Knut Fægri in 1933, though the first exclusively lichenometric paper was not published until 1950, by Austrian Roland Beschel (1928-1971), in a paper concerning the European Alps.
Lichenometry can provide dates for glacial deposits in tundra environments, lake level changes, glacial moraines, trim lines, palaeofloods, rockfalls, seismic events associated with the rockfalls, talus (scree) stabilization and former extent of permafrost or very persistent snow cover. It has also been explored as a tool in assessing the speed of glacier retreat due to climate change.