A set of dynamical equations describe the resultant trajectories when objects move owing to a constant gravitational force under normal Earth-bound conditions. For example, Newton's law of universal gravitation simplifies to F = mg, where m is the mass of the body. This assumption is reasonable for objects falling to earth over the relatively short vertical distances of our everyday experience, but is untrue over larger distances, such as spacecraft trajectories. Please note that in this article any resistance from air (drag) is neglected.
The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object — for example, the equations are hopelessly wrong for a feather, which has a low mass but offers a large resistance to the air. (In the absence of an atmosphere all objects fall at the same rate, as astronaut David Scott demonstrated by dropping a hammer and a feather on the surface of the Moon.)
The equations also ignore the rotation of the Earth, failing to describe the Coriolis effect for example. Nevertheless, they are usually accurate enough for dense and compact objects falling over heights not exceeding the tallest man-made structures.
Near the surface of the Earth, the acceleration due to gravity g = 9.81 m/s2 (meters per second squared; which might be thought of as "meters per second, per second", or 32.2 ft/s2 as "feet per second per second") approximately. For other planets, multiply g by the appropriate scaling factor. A coherent set of units for g, d, t and v is essential. Assuming SI units, g is measured in meters per second squared, so d must be measured in meters, t in seconds and v in meters per second.