*** Welcome to piglix ***

Gravitational acceleration


In physics, gravitational acceleration is the acceleration on an object caused by the force of gravitation. Neglecting friction such as air resistance, all small bodies accelerate in a gravitational field at the same rate relative to the center of mass. This equality is true regardless of the masses or compositions of the bodies.

At different points on Earth, objects fall with an acceleration between 9.764 m/s2 and 9.834 m/s2 depending on altitude and latitude, with a conventional standard value of exactly 9.80665 m/s2 (approximately 32.174 ft/s2). This does not take into account other effects, such as buoyancy or drag.

Newton's law of universal gravitation states that there is a gravitational force between any two masses that is equal in magnitude for each mass, and is aligned to draw the two masses toward each other. The formula is:

where and are the two masses, is the gravitational constant, and is the distance between the two masses. The formula was derived for planetary motion where the distances between the planets and the Sun made it reasonable to consider the bodies to be point masses. (For a satellite in orbit, the 'distance' refers to the distance from the mass centers rather than, say, the altitude above a planet's surface.)


...
Wikipedia

...