Landslide mitigation refers to construction and other man-made activities on slopes with the goal of lessening the effect of landslides. Landslides can be triggered by many, sometimes causes. In addition to shallow erosion or reduction of shear strength caused by seasonal rainfall, landslides may be triggered by activities, such as adding excessive weight above the slope, digging at mid-slope or at the foot of the slope. Often, individual phenomena join together to generate instability over time, which often does not allow a reconstruction of the evolution of a particular landslide. Therefore, landslide hazard mitigation measures are not generally classified according to the phenomena that might cause a landslide. Instead, they are classified by the sort of slope stabilization method used:
Each of these methods varies somewhat with the type of material that makes up the slope.
Reinforcement measures generally consist of the introduction of metal elements which increase the shear strength of the rock and to reduce the stress release created when the rock is cut. Reinforcement measures are made up of metal rock nails or anchors. Anchorage subjected to pretensioning is classified as active anchorage. Passive anchorage, not subjected to pretensioning, can be used both to nail single unstable blocks and to reinforce large portions of rock. Anchorage can also be used as pre-reinforcement elements on a scarp to limit hillside decompression associated with cutting. Parts of an anchorage include:
When the anchorage acts over a short length it is defined as a bolt, which is not structurally connected to the free length, made up of an element resistant to traction (normally a steel bar of less than 12 m protected against corrosion by a concrete sheath).
The anchorage device may be connected to the ground by chemical means, mechanical expansion or concreting. In the first case, polyester resin cartridges are placed in a perforation to fill the ring space around the end part of the bolt. The main advantage of this type of anchorage lies in its simplicity and in the speed of installation. The main disadvantage is in its limited strength. In the second case, the anchorage is composed of steel wedges driven into the sides of the hole. The advantage of this type of anchorage lies in the speed of installation and in the fact that the tensioning can be achieved immediately. The main disadvantage with this type of anchorage is that it can only be used with hard rock, and the maximum traction force is limited. In the third case, the anchorage is achieved by concreting the whole metal bar. This is the most-used method since the materials are cheap and installation is simple. Injected concrete mixes can be used in many different rocks and grounds, and the concrete sheath protects the bar from corrosion. The concrete mixture is generally made up of water and cement in the ratio W/C = 0.40-0.45, producing a sufficiently fluid mixture to allow pumping into the hole, while at the same time, providing high mechanical strength when set.