In mathematics, the Krull–Schmidt theorem states that a group subjected to certain finiteness conditions on chains of subgroups, can be uniquely written as a finite direct product of indecomposable subgroups.
We say that a group G satisfies the ascending chain condition (ACC) on subgroups if every sequence of subgroups of G:
is eventually constant, i.e., there exists N such that GN = GN+1 = GN+2 = ... . We say that G satisfies the ACC on normal subgroups if every such sequence of normal subgroups of G eventually becomes constant.
Likewise, one can define the descending chain condition on (normal) subgroups, by looking at all decreasing sequences of (normal) subgroups:
Clearly, all finite groups satisfy both ACC and DCC on subgroups. The infinite cyclic group satisfies ACC but not DCC, since (2) > (2)2 > (2)3 > ... is an infinite decreasing sequence of subgroups. On the other hand, the -torsion part of (the quasicyclic p-group) satisfies DCC but not ACC.