In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p∞-group, Z(p∞), for a prime number p is the unique p-group in which every element has p different p-th roots.
The Prüfer p-groups are countable abelian groups which are important in the classification of infinite abelian groups: they (along with the group of rational numbers) form the smallest building blocks of all divisible groups.
The groups are named after Heinz Prüfer, a German mathematician of the early 20th century.
The Prüfer p-group may be identified with the subgroup of the circle group, U(1), consisting of all pn-th roots of unity as n ranges over all non-negative integers:
The group operation here is the multiplication of complex numbers.
Alternatively and equivalently, the Prüfer p-group may be defined as the Sylow p-subgroup of the quotient group Q/Z, consisting of those elements whose order is a power of p:
(where Z[1/p] denotes the group of all rational numbers whose denominator is a power of p, using addition of rational numbers as group operation).
We can also write
where Qp denotes the additive group of p-adic numbers and Zp is the subgroup of p-adic integers.
There is a presentation
Here, the group operation in Z(p∞) is written as multiplication.
The complete list of subgroups of the Prüfer p-group Z(p∞) is:
(Here is a cyclic subgroup of Z(p∞) with pn elements; it contains precisely those elements of Z(p∞) whose order divides pn and corresponds to the set of pn-th roots of unity.) The Prüfer p-groups are the only infinite groups whose subgroups are totally ordered by inclusion. This sequence of inclusions expresses the Prüfer p-group as the direct limit of its finite subgroups. As there is no maximal subgroup of a Prüfer p-group, it is its own Frattini subgroup.