*** Welcome to piglix ***

Kleinian group


In mathematics, a Kleinian group is a discrete subgroup of PSL(2, C). The group PSL(2, C) of 2 by 2 complex matrices of determinant 1 modulo its center has several natural representations: as conformal transformations of the Riemann sphere, and as orientation-preserving isometries of 3-dimensional hyperbolic space H3, and as orientation preserving conformal maps of the open unit ball B3 in R3 to itself. Therefore, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

There are some variations of the definition of a Kleinian group: sometimes Kleinian groups are allowed to be subgroups of PSL(2, C).2 (PSL(2, C) extended by complex conjugations), in other words to have orientation reversing elements, and sometimes they are assumed to be finitely generated, and sometimes they are required to act properly discontinuously on a non-empty open subset of the Riemann sphere. A Kleinian group is said to be of type 1 if the limit set is the whole Riemann sphere, and of type 2 otherwise.

The theory of general Kleinian groups was founded by Felix Klein (1883) and Henri Poincaré (1883), who named them after Felix Klein. The special case of Schottky groups had been studied a few years earlier, in 1877, by Schottky.

By considering the ball's boundary, a Kleinian group can also be defined as a subgroup Γ of PGL(2,C), the complex projective linear group, which acts by Möbius transformations on the Riemann sphere. Classically, a Kleinian group was required to act properly discontinuously on a non-empty open subset of the Riemann sphere, but modern usage allows any discrete subgroup.


...
Wikipedia

...