*** Welcome to piglix ***

Kimmelstiel-Wilson syndrome

Diabetic nephropathy
Nodular glomerulosclerosis.jpeg
Two glomeruli in diabetic nephropathy: the acellular light purple areas within the capillary tufts are the destructive mesangial matrix deposits.
Classification and external resources
Specialty endocrinology
ICD-10 E10.2, E11.2, E12.2, E13.2, E14.2
ICD-9-CM 250.4
MedlinePlus 000494
MeSH D003928
[]

Diabetic nephropathy (diabetic kidney disease) (DN) is the chronic loss of kidney function occurring in those with diabetes mellitus. It is a serious complication, affecting around one-quarter of adult diabetics in the United States. It usually is slowly progressive over years. Pathophysiologic abnormalities in DN begin with long-standing poorly controlled blood glucose levels. This is followed by multiple changes in the filtration units of the kidneys, the nephrons. (There are normally about 3/4-1 1/2 million nephrons in each adult kidney). Initially, there is constriction of the efferent arterioles and dilation of afferent arterioles, with resulting glomerular capillary hypertension and hyperfiltration; this gradually changes to hypofiltration over time. Concurrently, there are changes within the glomerulus itself: these include a thickening of the basement membrane, a widening of the slit membranes of the podocytes, an increase in the number of mesangial cells, and an increase in mesangial matrix. This matrix invades the glomerular capillaries and produces deposits called Kimmelstiel-Wilson nodules. The mesangial cells and matrix can progressively expand and consume the entire glomerulus, shutting off filtration.

The status of DN may be monitored by measuring two values: the amount of protein in the urine - proteinuria; and a blood test called the serum creatinine. The amount of the proteinuria is a reflection of the degree of damage to any still-functioning glomeruli. The value of the serum creatinine can be used to calculate the estimated glomerular filtration rate (eGFR), which reflects the percentage of glomeruli which are no longer filtering the blood.

Treatment with an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), which dilates the arteriole exiting the glomerulus, thus reducing the blood pressure within the glomerular capillaries, may delay - but not stop - progression of the disease. Also, three classes of diabetes medications - GLP-1 agonists, DPP-4 inhibitors, and SGLT2 inhibitors - may delay progression.


...
Wikipedia

...