A Kater's pendulum is a reversible freeswinging pendulum invented by British physicist and army captain Henry Kater in 1817 for use as a gravimeter instrument to measure the local acceleration of gravity. Its advantage is that, unlike previous pendulum gravimeters, the pendulum's centre of gravity and center of oscillation do not have to be determined, allowing greater accuracy. For about a century, until the 1930s, Kater's pendulum and its various refinements remained the standard method for measuring the strength of the Earth's gravity during geodetic surveys. It is now used only for demonstrating pendulum principles.
A pendulum can be used to measure the acceleration of gravity g because its period of swing T depends, by small oscillations, only on g and its length L:
So by measuring the length L and period T of a pendulum, g can be calculated.
The Kater pendulum consists of a rigid metal bar with two pivot points, one near each end of the bar. It can be suspended from either pivot and swung. It also has either an adjustable weight that can be moved up and down the bar, or one adjustable pivot, to adjust the periods of swing. In use, it is swung from one pivot, and the period timed, and then turned upside down and swung from the other pivot, and the period timed. The movable weight (or pivot) is adjusted until the two periods are equal. At this point the period T is equal to the period of an 'ideal' simple pendulum of length equal to the distance between the pivots. From the period and the measured distance L between the pivots, the acceleration of gravity can be calculated with great precision from the equation (1) above.
The first person to discover that gravity varied over the Earth's surface was French scientist Jean Richer, who in 1671 was sent on an expedition to Cayenne, French Guiana, by the French Académie des Sciences, assigned the task of making measurements with a pendulum clock. Through the observations he made in the following year, Richer determined that the clock was 2½ minutes per day slower than at Paris, or equivalently the length of a pendulum with a swing of one second there was 1¼ Paris lines, or 2.6 mm, shorter than at Paris. It was realized by the scientists of the day, and proven by Isaac Newton in 1687, that this was due to the fact that the Earth was not a perfect sphere but slightly oblate; it was thicker at the equator because of the Earth's rotation. Since the surface was farther from the Earth's center at Cayenne than at Paris, gravity was weaker there. Since that time pendulums began to be used as precision gravimeters, taken on voyages to different parts of the world to measure the local gravitational acceleration. The accumulation of geographical gravity data resulted in more and more accurate models of the overall shape of the Earth.