*** Welcome to piglix ***

Kakutani's fixed point theorem


In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

The theorem was developed by Shizuo Kakutani in 1941, and was used by John Nash in his description of Nash equilibria. It has subsequently found widespread application in game theory and economics.

Kakutani's theorem states:

Let f(x) be a set-valued function defined on the closed interval [0, 1] that maps a point x to the closed interval [1 − x/2, 1 − x/4]. Then f(x) satisfies all the assumptions of the theorem and must have fixed points.

In the diagram, any point on the 45° line (dotted line in red) which intersects the graph of the function (shaded in grey) is a fixed point, so in fact there is an infinity of fixed points in this particular case. For example, x = 0.72 (dashed line in blue) is a fixed point since 0.72 ∈ [1 − 0.72/2, 1 − 0.72/4].


...
Wikipedia

...