*** Welcome to piglix ***

KAM theory


The Kolmogorov–Arnold–Moser theorem (KAM theorem) is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics.

The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954. This was rigorously proved and extended by Vladimir Arnold (in 1963 for analytic Hamiltonian systems) and Jürgen Moser (in 1962 for smooth twist maps), and the general result is known as the KAM theorem. The KAM theorem, as it was originally stated, could not be applied directly as a whole to the motions of the solar system because of the presence of degeneracy in the unperturbed Kepler problem. However, it is useful in generating corrections of astronomical models, and to prove long-term stability and the avoidance of orbital resonance in solar system. Arnold used the methods of KAM to prove the stability of elliptical orbits in the planar three-body problem.

The KAM theorem is usually stated in terms of trajectories in phase space of an integrable Hamiltonian system. The motion of an integrable system is confined to an invariant torus (a doughnut-shaped surface). Different initial conditions of the integrable Hamiltonian system will trace different invariant tori in phase space. Plotting the coordinates of an integrable system would show that they are quasiperiodic.


...
Wikipedia

...