*** Welcome to piglix ***

Conservative force


A conservative force is a force with the property that the work done in moving a particle between two points is independent of the taken path. Equivalently, if a particle travels in a closed loop, the net work done (the sum of the force acting along the path multiplied by the displacement) by a conservative force is zero.

A conservative force is dependent only on the position of the object. If a force is conservative, it is possible to assign a numerical value for the potential at any point. When an object moves from one location to another, the force changes the potential energy of the object by an amount that does not depend on the path taken. If the force is not conservative, then defining a scalar potential is not possible, because taking different paths would lead to conflicting potential differences between the start and end points.

Gravitational force is an example of a conservative force, while frictional force is an example of a non-conservative force.

Other examples of conservative forces are: force in elastic spring, electrostatic force between two electric charges, magnetic force between two magnetic poles. The last two forces are called central forces as they act along the line joining the centres of two charged/magnetized bodies. Thus, all central forces are conservative forces.

Informally, a conservative force can be thought of as a force that conserves mechanical energy. Suppose a particle starts at point A, and there is a force F acting on it. Then the particle is moved around by other forces, and eventually ends up at A again. Though the particle may still be moving, at that instant when it passes point A again, it has traveled a closed path. If the net work done by F at this point is 0, then F passes the closed path test. Any force that passes the closed path test for all possible closed paths is classified as a conservative force.

The gravitational force, spring force, magnetic force (according to some definitions, see below) and electric force (at least in a time-independent magnetic field, see Faraday's law of induction for details) are examples of conservative forces, while friction and air drag are classical examples of non-conservative forces.


...
Wikipedia

...