*** Welcome to piglix ***

JunoCam


JunoCam (or JCM) is the visible-light camera/telescope of the Juno Jupiter orbiter, a NASA space probe launched to the planet Jupiter on 5 August 2011. It was built by Malin Space Science Systems. The telescope/camera has a field of view of 58 degrees with four filters (3 for visible light). The camera is run by the JunoCam Digital Electronics Assembly (JDEA) also made MSSS. It takes a swath of imaging as the spacecraft rotates; the camera is fixed to the spacecraft so at rotates the it gets one sweep of observation.

JunoCam is not one of the probe's core scientific instruments; it was put on board primarily for public science and outreach, to increase public engagement, and all images will be available on NASA's website. It is capable of being used for science, and does have some coordinated activities in regards to this, as well as to engage amateur and as well as professional infrared astronomers.

In addition to visible light filters, it also has a near infrared filter to help detect clouds; a methane filter in addition the visible color filters. The camera is a "push-broom" type imager, generating an image as the spacecraft turns.

Due to telecommunications constraints, Juno will only be able to return about 40 megabytes of camera data during each 11-day orbital period. This downlink average data rate of around 325 bits per second will limit the number of images that are captured and transmitted during each orbit to somewhere between 10 and 1000 depending on the compression level used. This is comparable to the previous Galileo mission that orbited Jupiter, which captured thousands of images despite its slow data rate of 1000 bits per second (at maximum compression levels) due to antenna problems that crippled its planned 135,000 bit-per-second communications link.

The primary observation target is planet Jupiter itself, although it is expected if all goes well should be able to capture some limited images of the Jupiter moons Metis and Adrastea.

The JunoCam physical and electronic interfaces are largely based on the MARDI instrument for the Mars Science Laboratory. However, the housing and some aspects of the camera's inner mechanism have been modified to provide stable operation in the planet's comparatively intense radiation and magnetic field. Part of its mission will be to provide close up views of Jupiter's polar region and lower-latitude cloud belts, and at Juno's intended orbit the camera is able to take images at up to 15 kilometres (9.3 mi) per pixel resolution. However, within one hour of closest approach to Jupiter it can take up to 3 kilometres (1.9 mi) pixel, thus exceeding the resolution of Cassini up to that that time on Saturn.


...
Wikipedia

...