*** Welcome to piglix ***

Jugnu (satellite)

Jugnu
Mission type Remote Sensing
Technology
Operator IIT Kanpur
COSPAR ID 2011-058B
Spacecraft properties
Launch mass 3 kilograms (6.6 lb)
Start of mission
Launch date 12 October 2011 (2011-10-12)
Rocket PSLV-CA C18
Launch site Satish Dhawan FLP
Contractor ISRO
Orbital parameters
Reference system Geocentric
Regime Low Earth

Jugnu (Hindi: जुगनू), is an Indian technology demonstration and remote sensing CubeSat satellite which was operated by the Indian Institute of Technology Kanpur. Built under the guidance of Dr. N. S. Vyas, it is a nanosatellite which will be used to provide data for agriculture and disaster monitoring. It is a 3-kilogram (6.6 lb) spacecraft, which measures 34 centimetres (13 in) in length by 10 centimetres (3.9 in) in height and width. Its development programme cost around 25 million rupee. It has a design life of one year.

Jugnu was launched on 12 October 2011 into low Earth orbit by a PSLV-CA C18.

This Subsystem captures near IR images of targeted surface on earth which helps in identification of the utilization of the place. The subsystem consists of a "Near IR camera", an external storage and an On-Board Computer(OBC) which acts as an interface between the two, apart carrying out the image compression/processing. The camera captures a 640X480 px image which is then transferred to an external memory by the OBC. The image is then processed (if required) and transmitted to the ground station. An overall resolution of about 161 X 161 m2 per pixel is expected on earth’s surface. The total area of view, on earth’s surface is expected to be around 103 X 77 km2.

The GPS payload in Jugnu helps in synchronizing the time of OBC from the time data retrieved from the GPS module. The Orbital Parameters from the GPS is fed into the ADCS system which assists in satellite positioning from time to time.

The Attitude Determination and Control System (ADCS) orients the satellite in a manner such that maximum solar energy is incident on its solar panels. During imaging the satellite must point at a fixed location on earth in order to capture high-quality images, which is accomplished by the ADCS. Control by the ADCS is necessary to ensure that the antennas, which have narrow beams, are pointed correctly towards the earth. Gravitational forces from the sun, moon, and planets; solar pressure acting on the antennas and satellite body; and magnetic fields create rotational disturbances. Since the satellite moves around the earth's center in its orbit, the forces described above vary cyclically. This tends to set up nutation of the satellite which is damped using ADCS.


...
Wikipedia

...