*** Welcome to piglix ***

Jordan–Schönflies theorem


In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem.

It states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.

An alternative statement is that if is a simple closed curve, then there is a homeomorphism such that is the unit circle in the plane. Elementary proofs can be found in Newman (1939), Cairns (1951), Moise (1977) and Thomassen (1992). The result can first be proved for polygons when the homeomorphism can be taken to be piecewise linear and the identity map off some compact set; the case of a continuous curve is then deduced by approximating by polygons. The theorem is also an immediate consequence of Carathéodory's extension theorem for conformal mappings, as discussed in Pommerenke (1992), p. 25.


...
Wikipedia

...