*** Welcome to piglix ***

Jacobson radical


In mathematics, more specifically ring theory, a branch of abstract algebra, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); however to avoid confusion with other radicals of rings, the former notation will be preferred in this article. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in (Jacobson 1945).

The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma.

As with other radicals of rings, the Jacobson radical can be thought of as a collection of "bad" elements. In this case the "bad" property is that these elements annihilate all simple left and right modules of the ring. For purposes of comparison, consider the nilradical of a commutative ring, which consists of all elements that are nilpotent. In fact for any ring, the nilpotent elements in the center of the ring are also in the Jacobson radical. So, for commutative rings, the nilradical is contained in the Jacobson radical.


...
Wikipedia

...