*** Welcome to piglix ***

Isotopes of meitnerium

Main isotopes of meitnerium
iso NA half-life DM DE (MeV) DP
282Mt syn 67 s? α 8.77 278Bh
278Mt syn 4 s α 9.6 274Bh
276Mt syn 0.6 s α 9.71 272Bh
274Mt syn 0.4 s α 9.76 270Bh

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982 (this is also the only isotope directly synthesized, all other isotopes are decay products of heavier elements). There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds. The unconfirmed heavier 282Mt appears to have an even longer half-life of 67 seconds.

Super-heavy elements such as meitnerium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of meitnerium, meitnerium-266, can be synthesized directly this way, all the heavier meitnerium isotopes have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. Nevertheless, the products of hot fusion tend to still have more neutrons overall. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).


...
Wikipedia

...