*** Welcome to piglix ***

Bohrium-270

Main isotopes of bohrium
Iso­tope Decay
abun­dance half-life mode energy (MeV) pro­duct
278Bh syn 690 s? SF
274Bh syn 40 s α 8.8 270Db
272Bh syn 10 s α 9.02 268Db
271Bh syn 1 s α 9.35 267Db
270Bh syn 60 s α 8.93 266Db
267Bh syn 17 s α 8.83 263Db

Bohrium (107Bh) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 262Bh in 1981. There are 11 known isotopes ranging from 260Bh to 274Bh, and 1 isomer, 262mBh. The longest-lived isotope is 270Bh with a half-life of 1 minute, although the unconfirmed 278Bh may have an even longer half-life of about 690 seconds.

Super-heavy elements such as bohrium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of bohrium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50−MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

Before the first successful synthesis of hassium in 1981 by the GSI team, the synthesis of bohrium was first attempted in 1976 by scientists at the Joint Institute for Nuclear Research at Dubna using this cold fusion reaction. They detected two spontaneous fission activities, one with a half-life of 1–2 ms and one with a half-life of 5 s. Based on the results of other cold fusion reactions, they concluded that they were due to 261Bh and 257Db respectively. However, later evidence gave a much lower SF branching for 261Bh reducing confidence in this assignment. The assignment of the dubnium activity was later changed to 258Db, presuming that the decay of bohrium was missed. The 2 ms SF activity was assigned to 258Rf resulting from the 33% EC branch. The GSI team studied the reaction in 1981 in their discovery experiments. Five atoms of 262Bh were detected using the method of correlation of genetic parent-daughter decays. In 1987, an internal report from Dubna indicated that the team had been able to detect the spontaneous fission of 261Bh directly. The GSI team further studied the reaction in 1989 and discovered the new isotope 261Bh during the measurement of the 1n and 2n excitation functions but were unable to detect an SF branching for 261Bh. They continued their study in 2003 using newly developed bismuth(III) fluoride (BiF3) targets, used to provide further data on the decay data for 262Bh and the daughter 258Db. The 1n excitation function was remeasured in 2005 by the team at the Lawrence Berkeley National Laboratory (LBNL) after some doubt about the accuracy of previous data. They observed 18 atoms of 262Bh and 3 atoms of 261Bh and confirmed the two isomers of 262Bh.


...
Wikipedia

...