*** Welcome to piglix ***

Irreducible ideal


In mathematics, a proper ideal of a commutative ring is said to be irreducible if it cannot be written as the intersection of two strictly larger ideals.

Every prime ideal is irreducible. Every irreducible ideal of a Noetherian ring is a primary ideal, and consequently for Noetherian rings an irreducible decomposition is a primary decomposition. Every primary ideal of a principal ideal domain is an irreducible ideal. Every irreducible ideal is a primal ideal.

An element of an integral domain is prime if, and only if, an ideal generated by it is a nonzero prime ideal. This is not true for irreducible ideals: an irreducible ideal may be generated by an element that is not an irreducible element, as is the case in for the ideal : It is not the intersection of two strictly greater ideals.


...
Wikipedia

...