In mathematics, specifically in topology, the interior of a subset S of points of a topological space X consists of all points of S that do not belong to the boundary of S. A point that is in the interior of S is an interior point of S.
The interior of S is the complement of the closure of the complement of S. In this sense interior and closure are dual notions.
The exterior of a set is the interior of its complement, equivalently the complement of its closure; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). The interior and exterior are always open while the boundary is always closed. Sets with empty interior have been called boundary sets.
If S is a subset of a Euclidean space, then x is an interior point of S if there exists an open ball centered at x which is completely contained in S. (This is illustrated in the introductory section to this article.)
This definition generalizes to any subset S of a metric space X with metric d: x is an interior point of S if there exists r > 0, such that y is in S whenever the distance d(x, y) < r.
This definition generalises to topological spaces by replacing "open ball" with "open set". Let S be a subset of a topological space X. Then x is an interior point of S if x is contained in an open subset of S. (Equivalently, x is an interior point of S if there exists a neighbourhood of x which is contained in S.)