Interest point detection is a recent terminology in computer vision that refers to the detection of interest points for subsequent processing. An interest point is a point in the image which in general can be characterized as follows:
Historically, the notion of interest points goes back to the earlier notion of corner detection, where corner features were in early work detected with the primary goal of obtaining robust, stable and well-defined image features for object tracking and recognition of three-dimensional CAD-like objects from two-dimensional images. In practice, however, most corner detectors are sensitive not specifically to corners, but to local image regions which have a high degree of variation in all directions. The use of interest points also goes back to the notion of regions of interest, which have been used to signal the presence of objects, often formulated in terms of the output of a blob detection step. While blob detectors have not always been included within the class of interest point operators, there is no rigorous reason for excluding blob descriptors from this class. For the most common types of blob detectors (see the article on blob detection), each blob descriptor has a well-defined point, which may correspond to a local maximum, a local maximum in the operator response or a centre of gravity of a non-infinitesimal region. In all other respects, the blob descriptors also satisfy the criteria of an interest point defined above.
In terms of applications, the use of corner detection and blob detection are also overlapping. Today, a main application of interest points is to signal points/regions in the image domain that are likely candidates to be useful for image matching and view-based object recognition. For this purpose, several types of corner detectors and blob detectors have been demonstrated to be highly useful in practical applications (see respective articles for references). Blob detectors and corner detectors have also been used as primitives for texture recognition, texture analysis and for constructing 3D models from multiple views of textured objects.