Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, image registration, video tracking, image mosaicing, panorama stitching, 3D modelling and object recognition. Corner detection overlaps with the topic of interest point detection.
A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
An interest point is a point in an image which has a well-defined position and can be robustly detected. This means that an interest point can be a corner but it can also be, for example, an isolated point of local intensity maximum or minimum, line endings, or a point on a curve where the curvature is locally maximal.
In practice, most so-called corner detection methods detect interest points in general, and in fact, the term "corner" and "interest point" are used more or less interchangeably through the literature. As a consequence, if only corners are to be detected it is necessary to do a local analysis of detected interest points to determine which of these are real corners. Examples of edge detection that can be used with post-processing to detect corners are the Kirsch operator and the Frei-Chen masking set.
"Corner", "interest point" and "feature" are used interchangeably in literature, confusing the issue. Specifically, there are several blob detectors that can be referred to as "interest point operators", but which are sometimes erroneously referred to as "corner detectors". Moreover, there exists a notion of ridge detection to capture the presence of elongated objects.
Corner detectors are not usually very robust and often require large redundancies introduced to prevent the effect of individual errors from dominating the recognition task.