In computer architecture, instructions per cycle (IPC) is one aspect of a processor's performance: the average number of instructions executed for each clock cycle. It is the multiplicative inverse of cycles per instruction.
The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question. The number of instructions per second is an approximate indicator of the likely performance of the processor.
The number of instructions executed per clock is not a constant for a given processor; it depends on how the particular software being run interacts with the processor, and indeed the entire machine, particularly the memory hierarchy. However, certain processor features tend to lead to designs that have higher-than-average IPC values; the presence of multiple arithmetic logic units (an ALU is a processor subsystem that can perform elementary arithmetic and logical operations), and short pipelines. When comparing different instruction sets, a simpler instruction set may lead to a higher IPC figure than an implementation of a more complex instruction set using the same chip technology; however, the more complex instruction set may be able to achieve more useful work with fewer instructions.
A given level of instructions per second can be achieved with a high IPC and a low clock speed (like the AMD Athlon and early Intel's Core Series), or from a low IPC and high clock speed (like the Intel Pentium 4 and to a lesser extent the AMD Bulldozer). Both are valid processor designs, and the choice between the two is often dictated by history, engineering constraints, or marketing pressures. However high IPC with high frequency gives the best performance.