Instant tea is a powder that water is added to in order to be reconstituted into a cup of tea. The earliest form of instant tea was developed in the United Kingdom in 1885. A patent was granted for a paste made of concentrated tea extract, sugar, and evaporated milk, which became tea when hot water was added. However, no notable developments were made until spray drying technology allowed for drying the tea concentrates at a temperature which did not damage the flavors of the product.
Instant tea powder by itself is the dehydrated flavor, aroma, and color compounds found in tea. When marketed, other ingredients can be added, such as sugar for taste, citric acid for tartness, and other flavors that would not normally be found in tea leaves, such as those of raspberry or lemon. Physically speaking, the reconstituted tea is mostly water with compounds dissolved within it to give a certain taste. This means that the tea falls under the classification of a Newtonian fluid. Flavor and color compounds being evenly distributed when water is added indicates that the reconstituted tea is a homogeneous mixture. While traditional tea prepared using tea leaves and hot water has insoluble compounds that would cause it to be a suspension as well, instant tea is manufactured with the intent of being dissolved in water.
Production of instant tea can be broken down into six main steps: selection of raw materials, extraction, aroma stripping, tea cream processing, concentration, and drying.
Selection of tea leaves is done with the best interests of both the manufacturer and end user. Because of certain legal restrictions in tea producing countries, it is most cost effective for manufacturers to use fermented, undried black leaves, as they do not have to pass through public auctions and are therefore cheaper. Quality is not sacrificed, as research has been done to show that this type of leaf has similar flavor when compared to dried, black leaves.
Extraction is done with two goals in mind: yield of tea solids extracted from the leaf, and concentration of the extract solution. Research has shown that tea leaf solubles in a column extractor can be described in a system of three components, each which obey a first-order solution law. The explanation given for why the soluble compounds fall into any of these three categories is based on how accessible they are. The instantly soluble compounds are likely to be right on the surface of the leaf, which is why they are the first to be obtained. The rapidly soluble components are thought to be from the inside of the leaves, where broken cell structures slow both the rate of solvent entering as well as solute leaving. The slowest soluble compounds are expected to have either high molecular mass, which would take longer to move through the cell matrices of the leaves, or products formed during hydrolysis over the course of the extraction. There are a variety of methods and machinery that can be used to perform extraction, but the general concept is that the leaves are treated with a solvent in order to extract the compounds within them. In the aforementioned study, it was stated that the maximum yield of solids that could be extracted was 35%. Over time, other chemical methods of increasing extraction yields have been discovered, such as using hydrogen peroxide on extracted leaves to obtain a yield of 42% solids. After the extraction step, the solution is clarified by passing through a decanter, centrifuge, or filter press.