In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.
Ramification groups are a refinement of the Galois group of a finite Galois extension of local fields. We shall write for the valuation, the ring of integers and its maximal ideal for . As a consequence of Hensel's lemma, one can write for some where is the ring of integers of . (This is stronger than the primitive element theorem.) Then, for each integer , we define to be the set of all that satisfies the following equivalent conditions.