*** Welcome to piglix ***

Ramification (mathematics)


In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing together of the fibers of the mapping.

In complex analysis, the basic model can be taken as the z zn mapping in the complex plane, near z = 0. This is the standard local picture in Riemann surface theory, of ramification of order n. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. See also branch point.

In a covering map the Euler-Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The z zn mapping shows this as a local pattern: if we exclude 0, looking at 0 < |z| < 1 say, we have (from the homotopy point of view) the circle mapped to itself by the n-th power map (Euler-Poincaré characteristic 0), but with the whole disk the Euler-Poincaré characteristic is 1, n – 1 being the 'lost' points as the n sheets come together at z = 0.


...
Wikipedia

...