In control theory, a controller is a device, historically using mechanical, hydraulic, pneumatic or electronic techniques often in combination, but more recently in the form of a microprocessor or computer, which monitors and physically alters the operating conditions of a given dynamical system. Typical applications of controllers are to hold settings for temperature, pressure, flow or speed.
A system can either be described as a MIMO system, having multiple inputs and outputs, therefore requiring more than one controller; or a SISO system, consisting of a single input and single output, hence having only a single controller. Depending on the set-up of the physical (or non-physical) system, adjusting the system's input variable (assuming it is SISO) will affect the operating parameter, otherwise known as the controlled output variable. Upon receiving the error signal that marks the disparity between the desired value (setpoint) and the actual output value, the controller will then attempt to regulate controlled output behaviour. The controller achieves this by either attenuating or amplifying the input signal to the plant so that the output is returned to the setpoint. For example, a simple feedback control system, such as the one shown on the right, will generate an error signal that's mathematically depicted as the difference between the setpoint value and the output value, r-y.
This signal describes the magnitude by which the output value deviates from the setpoint. The signal is subsequently sent to the controller C which then interprets and adjusts for the discrepancy. If the plant is a physical one, the inputs to the system are regulated by means of actuators.
A thermostat on a heater is an example of open loop control that is on or off. A temperature sensor turns the heat source on if the temperature falls below the set point and turns the heat source off when the set point is reached. There is no measurement of the difference between the set point and the measured temperature (e.g. no error measurement) and no adjustment to the rate at which heat is added other than all or none.
A familiar example of feedback control is cruise control on an automobile. Here speed is the measured variable. The operator (driver) adjusts the desired speed set point (e.g. 100 km/hr) and the controller monitors the speed sensor and compares the measured speed to the set point. Any deviations, such as changes in grade, drag, wind speed or even using a different grade of fuel (for example an ethanol blend) are corrected by the controller making a compensating adjustment to the fuel valve open position, which is the manipulated variable. The controller makes adjustments having information only about the error (magnitude, rate of change or cumulative error) although adjustments known as tuning are used to achieve stable control. The operation of such controllers is the subject of control theory.