*** Welcome to piglix ***

MIMO


In radio, multiple-input and multiple-output, or MIMO (pronounced /ˈmm/ or /ˈmm/), is a method for multiplying the capacity of a radio link using multiple transmit and receive antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution (4G). More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification.

At one time, in wireless the term "MIMO" referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically refers to a practical technique for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting multipath propagation. MIMO is fundamentally different from smart antenna techniques developed to enhance the performance of a single data signal, such as beamforming and diversity.

MIMO is often traced back to 1970s research papers concerning multi-channel digital transmission systems and interference (crosstalk) between wire pairs in a cable bundle: AR Kaye and DA George (1970), Branderburg and Wyner (1974), and W. van Etten (1975, 1976). Although these are not examples of exploiting multipath propagation to send multiple information streams, some of the mathematical techniques for dealing with mutual interference proved useful to MIMO development. In the mid-1980s Jack Salz at Bell Laboratories took this research a step further, investigating multi-user systems operating over "mutually cross-coupled linear networks with additive noise sources" such as time-division multiplexing and dually-polarized radio systems.


...
Wikipedia

...