An ignimbrite is the deposit of a pyroclastic density current, or pyroclastic flow, which is a hot suspension of particles and gases flowing rapidly from a volcano driven by having a greater density than the surrounding atmosphere. New Zealand geologist Patrick Marshall derived the term 'ignimbrite' from ‘fiery rock dust cloud’ (from the Latin igni- (fire) and imbri- (rain)), formed as the result of immense explosions of pyroclastic ash, lapilli and blocks flowing down the sides of volcanoes.
Ignimbrites are made of a very poorly sorted mixture of volcanic ash (or tuff when lithified) and pumice lapilli, commonly with scattered lithic fragments. The ash is composed of glass shards and crystal fragments. Ignimbrites may be loose and unconsolidated or lithified (solidified) rock called lapilli-tuff. Proximal to the volcanic source, ignimbrites commonly contain thick accumulations of lithic blocks, and distally, many show meter thick accumulations of rounded cobbles of pumice.
Ignimbrites may be white, grey, pink, beige, brown or black depending on their composition and density. Many pale ignimbrites are dacitic or rhyolitic. Darker coloured ignimbrites may be densely welded volcanic glass or, less commonly, mafic in composition.
There are two main models that have been proposed to explain the deposition of ignimbrites from a pyroclastic density current, the en masse deposition and the progressive aggradation models.
The en masse model was proposed by volcanologist Robert Stephen John Sparks in 1976. Sparks attributed the poor sorting in ignimbrites to laminar flows of very high particle concentration. Pyroclastic flows were envisioned as being similar to debris flows, with a body undergoing laminar flow and then stopping en masse. The flow would travel as a plug flow, with an essentially non-deforming mass travelling on a thin shear zone and the en masse freezing occurs when the driving stress falls below a certain level. This would produce a massive unit with an inversely graded base.