Idempotence (UK: /ˌɪdɛmˈpoʊtns/; US: /ˌaɪdəmˈpoʊtəns/ EYE-dəm-POH-təns) is the property of certain operations in mathematics and computer science, that can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency).
The term was introduced by Benjamin Peirce in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + (same + power).