*** Welcome to piglix ***

Hyperconjugation


In organic chemistry, hyperconjugation is the interaction of the electrons in a sigma bond (usually C–H or C–C) with an adjacent empty (or partially filled) non-bonding p-orbital, antibonding σ or π orbital, or filled π orbital, to give an extended molecular orbital that increases the stability of the system. Only electrons in bonds that are β to the positively charged carbon can stabilize a carbocation by direct hyperconjugation. However, extended versions of hyperconjugation (such as double hyperconjugation) can be important as well.

Hyperconjugation can be used for rationalizing a variety of other chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals. Hyperconjugation is proposed by quantum mechanical modeling to be the correct explanation for the preference of the staggered conformation rather than the old textbook notion of steric hindrance.

Hyperconjugation affects several properties.

Early studies in hyperconjugation were performed by George Kistiakowsky et al. Their work, first published in 1937, was intended as a preliminary progress report of thermochemical studies of energy changes during addition reactions of various unsaturated and cyclic compounds. This pioneering work would lead many to investigate the group’s puzzling findings.


...
Wikipedia

...