Hydraulic conductivity, symbolically represented as , is a property of vascular plants, soils and rocks, that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media.
By definition, hydraulic conductivity is the ratio of velocity to hydraulic gradient indicating permeability of porous media.
There are two broad categories of determining hydraulic conductivity:
The experimental approach is broadly classified into:
The small scale field tests are further subdivided into:
Allen Hazen derived an empirical formula for approximating hydraulic conductivity from grain size analyses:
where
A pedotransfer function (PTF) is a specialized empirical estimation method, used primarily in the soil sciences, however has increasing use in hydrogeology. There are many different PTF methods, however, they all attempt to determine soil properties, such as hydraulic conductivity, given several measured soil properties, such as soil particle size, and bulk density.
There are relatively simple and inexpensive laboratory tests that may be run to determine the hydraulic conductivity of a soil: constant-head method and falling-head method.