Allen Hazen | |
---|---|
Allen Hazen, President of the New England Water Works Association, 1911
|
|
Born |
Norwich, Vermont, USA |
August 28, 1869
Died | July 26, 1930 Miles City, Montana, USA |
(aged 60)
Education | BS, New Hampshire College of Agriculture and Mechanical Arts, 1890 |
Occupation | Consulting engineer |
Known for | Outstanding engineering achievements in several fields |
Awards | Thomas Fitch Rowland Prize, American Society of Civil Engineers, 1900; Norman Medal, American Society of Civil Engineers, 1915; Water Industry Hall of Fame, American Water Works Association, 1971. |
Allen Hazen (August 28, 1869 – July 26, 1930) was an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930 and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers.
Allen Hazen was born in 1869 on his family farm located near the Connecticut River close to the small town of Norwich, Vermont. He attended the New Hampshire College of Agriculture and Mechanical Arts (which was affiliated with Dartmouth College) and graduated with a Bachelor of Science degree at 15 years of age.
During a year spent at MIT (1887-8), Hazen studied chemistry and came into contact with Professor William T. Sedgwick, Dr. Thomas M. Drown and fellow students George W. Fuller and George C. Whipple.
As a direct result of his association with Dr. Thomas M. Drown, Hazen was offered his first job at the Lawrence Experiment Station in Lawrence, Massachusetts. LES was likely the first institute in the world devoted solely to investigations of water purification and sewage treatment. From 1888 to 1893, Hazen headed the research team at this innovative research institute into water purification and sewage treatment.
Hazen is most widely known for developing in 1902 with Gardner S. Williams the Hazen-Williams equation which described the flow of water in pipelines. In 1905, the two engineers published an influential book, which contained solutions to the Hazen-Williams equation for pipes of widely varying diameters. The equation uses an empirically derived constant for the “roughness” of the pipe walls which became known as the Hazen-Williams coefficient.